EXPERIMENTAL STUDY Thyrotropin regulates tyrosine sulfation of thyroglobulin

نویسندگان

  • Marie-Christine Nlend
  • David Cauvi
  • Nicole Venot
  • Sylvie Desruisseau
  • Odile Chabaud
چکیده

Objective: To study the regulation of thyroglobulin sulfation by thyrotropin (TSH) and iodide. Sulfation, a widespread post-translational modification of proteins, is involved in various biological activities. Thyroglobulin has been reported to be sulfated but, to date, the role of sulfate residues in the metabolism and function of thyroglobulin is not known; moreover, the regulation of thyroglobulin sulfation has not been yet investigated. Methods: The effect of TSH on thyroglobulin sulfation was studied in porcine thyroid cells cultured on porous collagen-coated filters. Cells cultured with or without TSH and with or without iodide (KI) were incubated for 4 days with radioactive sulfate. The specific radioactivity of thyroglobulin subunit (330 kDa) was determined from apical media analyzed by electrophoresis. Enzymatic hydrolysates of the purified thyroglobulin were separated by oligosaccharide affinity chromatography and thin-layer chromatography; alkaline hydrolysates were analyzed only by thin-layer chromatography. Results: Thyroglobulin secreted by TSH-stimulated cells incorporated about twofold less radioactive sulfate. Iodide slightly modified this incorporation. Enzymatic hydrolysates of purified thyroglobulin showed sulfate residues bound essentially to complex oligosaccharide units. Alkaline hydrolysis was necessary to release all sulfated amino acids (tyrosine and serine). In the absence of TSH the proportion of tyrosine sulfate was dramatically increased: 24% compared with 7% (+KI) or 5% (1KI). The ratio of specific radioactivity of thyroglobulin to the specific radioactivity of intracellular inorganic sulfate (determined in each culture condition) gave the number of sulfated residues incorporated: 46 (1TSH) and 31 (+TSH) per mol thyroglobulin. From this distribution, we deduced the number of residues bound to complex oligosaccharide units and to tyrosine. Thus TSH decreased the number of sulfate residues on tyrosine from 11 to 2 per mol thyroglobulin. Conclusions: TSH regulates the binding of sulfate groups to tyrosine residues. Iodide exerts a slight control over this process. European Journal of Endocrinology 141 61–69

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Female infertility in grt mice is caused by thyroid hormone deficiency, not by insufficient TPST2 activity in the reproductive organs.

The growth-retarded (grt) mouse has an autosomal recessive hypothyroidism and the female shows lifelong infertility. We previously reported that these mutant phenotypes are caused by a deficiency in the enzymatic activity of tyrosylprotein sulfotransferase-2 (TPST2), and severe thyroid hypogenesis and consequent dwarfism are mainly due to the impairment of the tyrosine sulfation of thyroid-stim...

متن کامل

Tyrosine O Sulfation: An Overview

Tyrosine O sulfation is a post translational modification (PTM) originally discovered by Bettelheim in 1954 in the bovine protein fibrinogen. Currently, this PTM is found only in secreted and transmembrane proteins of higher eukaryotes. This article gives an overview of experimental tools to study tyrosine O sulfation and also describes the biological function of this PTM.

متن کامل

A mutation in Tpst2 encoding tyrosylprotein sulfotransferase causes dwarfism associated with hypothyroidism.

The growth-retarded (grt) mouse has an autosomal recessive, fetal-onset, severe thyroid hypoplasia related to TSH hyporesponsiveness. Through genetic mapping and complementation experiments, we show that grt is a missense mutation of a highly conserved region of the tyrosylprotein sulfotransferase 2 (Tpst2) gene, encoding one of the two Tpst genes implicated in posttranslational tyrosine O-sulf...

متن کامل

Transcriptional repressor DREAM interacts with thyroid transcription factor-1 and regulates thyroglobulin gene expression.

Tissue-specific gene expression depends on the interaction between tissue-specific and general transcription factors. DREAM is a Ca2+-dependent transcriptional repressor widely expressed in the brain where it participates in nociception through its control of prodynorphin gene expression. In the periphery, DREAM is highly expressed in the thyroid gland, the immune system, and the reproductive o...

متن کامل

A Multifeatures Fusion and Discrete Firefly Optimization Method for Prediction of Protein Tyrosine Sulfation Residues

Tyrosine sulfation is one of the ubiquitous protein posttranslational modifications, where some sulfate groups are added to the tyrosine residues. It plays significant roles in various physiological processes in eukaryotic cells. To explore the molecular mechanism of tyrosine sulfation, one of the prerequisites is to correctly identify possible protein tyrosine sulfation residues. In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999